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> whoami

e A software engineer since the 90’s

e Held various roles: Software Architect, Technology Advocate & Coach,
DevOps, Tech Lead, Team Lead, Project Manager, CTO

e Worked with organizations of different sizes, from startups to international
corporations like Nokia Networks

e At different levels, from assembly lang and reverse engineering up to
consumer-facing stand-alone, mobile, and web apps

e This talk is about one of my FreeBSD contributions
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The FreeBSD Test Suite

Unit test level

Integration/system test level
Organized with Kyua

A Kyuafile lists the test programs
> kyua test

> kyua -v parallelism=8 test Kyuafile

. syntax (2)

Etest_suite("FreeBSD")

;test_program{name:"arp", is exclusive="true"}

- atf test program{name="ptrace test", timeout="15"}

test
program
binary
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program
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And there are FreeBSD Jalils
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Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)

1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

e 2007 — HP released Secure Resource Partitions for HP-UX, later renamed to
HP-UX Containers

e 2008 — Linux 2.6.24 introduced cgroups

e 2013 — Linux 3.8 infroduced user namespaces

e 2013, a month later — the release of Docker



Containerization renaissance

e 2000 — FreeBSD 4.0 introduced jails




Virtual Machine as a metaphor
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m ————————————— | jail named "alcatraz"

Testing of FreeBSD network modules
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Docker in Docker (dind) — containerized Cl workflows
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FreeBSD Jail in Jail
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FreeBSD Jail in Jail
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FreeBSD Jail in Jail

a temporary jail
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Kyua’s execution environment concept

e Atest case may ask for a specific execenv
e The old way is named host
e The first extra execution environment is jail
® > kyua -v parallelism=8 test
Kyuafile
Esyntax(Z)

Etest_suite("FreeBSD")

Eatf_test_program{name="tl", timeout="15"}
§atf_test_program{name="t2", execenv="jail"}
Eatf_test_program{name="t3", execenv="7jail",

: execenv_jail params="vnet allow.raw_sockets"}

test
program
binary

test
program
script




The outcome

e Switching PF (Packet Filter) firewall tests to this feature was very easy:
-TEST METADATA+= 1s exclusive=true

+TEST METADATA+= execenv="jail"

+TEST METADATA+= execenv_ jall params="vnet allow.raw sockets"

e It depends, but there are reports that it takes several minutes instead of half an
hour using the same environment



97%

Developer satisfaction
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The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy

e Hierarchical jails can be leveraged similar ways as Docker-in-Docker

e By the way, OCI § FreeBSD

e The FreeBSD Test Suite is constantly growing and improving
o New features on the userland may help on the kernel side

e Probably, FreeBSD PF has the best test coverage among open source
firewalls
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