Enhancing FreeBSD Test
Suite Parallelism

FreeBSD jalil in jail after years of Linux docker in docker

Ilgor Ostapenko (
*OpenFest 2024 igoro@FreeBSD.org

pM@igoro.pro

> whoami

e A software engineer since the 90’s

e Held various roles: Software Architect, Technology Advocate & Coach,
DevOps, Tech Lead, Team Lead, Project Manager, CTO

e Worked with organizations of different sizes, from startups to international
corporations like Nokia Networks

e At different levels, from assembly lang and reverse engineering up to
consumer-facing stand-alone, mobile, and web apps

e This talk is about one of my FreeBSD contributions

Why do we test?

e Software development. Software development never changes.

Why do we test?

e Software development. Software development never changes.
e It’s still done by us, human beings. Defects are inevitable.

Why do we test?

e Software development. Software development never changes.
e It’s still done by us, human beings. Defects are inevitable.

e There are at least two options:

o End users are going to face those defects
o Or we hunt the bugs before releasing

Why do we test?

e Software development. Software development never changes.
e It’s still done by us, human beings. Defects are inevitable.

e There are at least two options:

o End users are going to face those defects
o Or we hunt the bugs before releasing

o $%$% usually is a decision maker

Why do we test?

e Software development. Software development never changes.

e |[t's still done by us, human beings. Defects are inevitable.

e There are at least two options:

o End users are going to face those defects
o Or we hunt the bugs before releasing

o $%$% usually is a decision maker

We can fix
you

N

-

e

The FreeBSD Test Suite

The FreeBSD Test Suite

e Unit test level

The FreeBSD Test Suite

e Unit test level
e Integration/system test level

The FreeBSD Test Suite

e Unit test level
e Integration/system test level
e Organized with Kyua

The FreeBSD Test Suite

e Unit test level
e Integration/system test level
e Organized with Kyua
e A Kyuafile lists the test programs
test
proZ?am
binary
Kyuafile -1
ésyntax(2) :
. test suite ("FreeBSD") E test
;test_program{name:"arp", is exclusive="true"} : sl Fﬁﬁﬁr
- atf test program{name="ptrace test", timeout="15"} : — |

The FreeBSD Test Suite

Unit test level

Integration/system test level
Organized with Kyua

A Kyuafile lists the test programs
> kyua test

Kyuafile

. syntax (2)

Etest_suite("FreeBSD")

;test_program{name:"arp", is exclusive="true"}

- atf test program{name="ptrace test", timeout="15"}

test
program
binary

test
program
script

The FreeBSD Test Suite

Unit test level

Integration/system test level
Organized with Kyua

A Kyuafile lists the test programs
> kyua test

> kyua -v parallelism=8 test Kyuafile

. syntax (2)

Etest_suite("FreeBSD")

;test_program{name:"arp", is exclusive="true"}

- atf test program{name="ptrace test", timeout="15"}

test
program
binary

test
program
script

And there are FreeBSD Jalils

Containerization

e There are many visions, but we just want to isolate the things

Containerization

e There are many visions, but we just want to isolate the things
e |Initially, it was about security

Containerization

e There are many visions, but we just want to isolate the things
e |Initially, it was about security
e Ended up as the new ways of development, delivery, and operations

Containerization

e There are many visions, but we just want to isolate the things
e |Initially, it was about security
e Ended up as the new ways of development, delivery, and operations

¢ ()¢ | = 3| O%

Containerization renaissance

e 1979 — chroot was added to Unix Version 7 (considered as a real start point)

Containerization renaissance

e 1979 — chroot was added to Unix Version 7 (considered as a real start point)
e 1980s and 1990s — mandatory access control, process domains

Containerization renaissance

e 1979 — chroot was added to Unix Version 7 (considered as a real start point)
e 1980s and 1990s — mandatory access control, process domains
e 2000 — FreeBSD 4.0 introduced jails

Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)
1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)
1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris
Zones

e 2007 — HP released Secure Resource Partitions for HP-UX, later renamed to
HP-UX Containers

Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)

1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

e 2007 — HP released Secure Resource Partitions for HP-UX, later renamed to
HP-UX Containers

e 2008 — Linux 2.6.24 introduced cgroups

Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)

1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

e 2007 — HP released Secure Resource Partitions for HP-UX, later renamed to
HP-UX Containers

e 2008 — Linux 2.6.24 introduced cgroups

e 2013 — Linux 3.8 infroduced user namespaces

Containerization renaissance

1979 — chroot was added to Unix Version 7 (considered as a real start point)

1980s and 1990s — mandatory access control, process domains

2000 — FreeBSD 4.0 introduced jails

2004 — Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

e 2007 — HP released Secure Resource Partitions for HP-UX, later renamed to
HP-UX Containers

e 2008 — Linux 2.6.24 introduced cgroups

e 2013 — Linux 3.8 infroduced user namespaces

e 2013, a month later — the release of Docker

Containerization renaissance

e 2000 — FreeBSD 4.0 introduced jails

Virtual Machine as a metaphor

inet |
inet6
inet |

inet6

inet
inet6

5
AY
N

A

A

process J

NIC

.7 ~
’ N
, .
P \
’ \
A '
) '
§ 1
\ T
5 Z;
’
% "
N ,
~. SE

7

m ————————————— | jail named "alcatraz"

Testing of FreeBSD network modules

firewall

it e it vt Ve i S Gt] i e et i

[nc (server) }

Such tests are mutually exclusive

————— \
|
|
|
nc (client) %[1 92.0.2.1 {——> 192.0.2 2-‘ { nc (server) }
firewall

nc (client) %{192.02.1 — 192.0.2.2.‘

{ nc (server) }

firewall

|
|
|
|
|
|

|
|

|
|
| ¢ %
| . VNET > ra—
| g jail named "alcatraz

\\\~---"" I

|

|
|

|
|
|
|
|
|
|

Such tests are mutually exclusive

, N |
WE NEED TO GO DEEPER

Docker in Docker (dind) — containerized Cl workflows

\

dockerd b

dcker
W

docke;
W

Docker in Docker (dind) — containerized Cl workflows

\

dockerd dockerd
docker docker

docker app (docker \
L) dockerd

docker

docker

p
e, ‘ >

Y

FreeBSD Jail in Jail

————— x
|
|
|

16 (elieit) %{1 92,021 {— 192.0.2.2.“\\YNETm

|
!

Vo
\VNET:
Y. ,"l I
|

|

nc (client) %[192.0.2.1 <}:{> 192.0.2.
|

jail named "alcatraz"

firewall

jail named "alcatraz"

firewall

~

FreeBSD Jail in Jail

—— \ jail named "alcatraz”

VN ET

|
|
|
g [— %{1 92.0.2.1 {——> 192.0.2. 21“ VNET M
|
|

| firewall

J

nc (cllent)

jail named "alcatraz"

firewall

N

FreeBSD Jail in Jail

a temporary jail
jail named "alcatraz"

’l,f""”\‘“\ _'_- :',')l‘ “\
nc (client)|| VNET | %{1 92.0.2.1 {=> 192.0.2.2] .\VNET'

firewall

a temporary jail
jail named "alcatraz"

,/'“‘-"\“\‘ r— /,x N
'UNET! %{1 92.0.2.1 <> 192.0.2.2] a“\VNETm

firewall

P =R |
I
I

| T
Lo] e
| ____‘,"

Kyua’s execution environment concept

e Atest case may ask for a specific execenv

Kyua’s execution environment concept

e Atest case may ask for a specific execenv
e The old way is named host

Kyua’s execution environment concept

e Atest case may ask for a specific execenv
e The old way is named host

e The first extra execution environment is jail
test
program
binary
Kyuafile 1
Esyntax(Z) :
. test suite ("FreeBSD") E test
. atf test program{name="tl", timeout="15"} : | ngﬁ“
- atf test program{name="t2", execenv="jail"} E s P

Eatf_test_program{name="t3", execenv="jail",
: execenv_jail params="vnet allow.raw_sockets"}

Kyua’s execution environment concept

e Atest case may ask for a specific execenv
e The old way is named host
e The first extra execution environment is jail
® > kyua -v parallelism=8 test
Kyuafile
Esyntax(Z)

Etest_suite("FreeBSD")

Eatf_test_program{name="tl", timeout="15"}
§atf_test_program{name="t2", execenv="jail"}
Eatf_test_program{name="t3", execenv="7jail",

: execenv_jail params="vnet allow.raw_sockets"}

test
program
binary

test
program
script

The outcome

e Switching PF (Packet Filter) firewall tests to this feature was very easy:
-TEST METADATA+= 1s exclusive=true

+TEST METADATA+= execenv="jail"

+TEST METADATA+= execenv_ jall params="vnet allow.raw sockets"

e It depends, but there are reports that it takes several minutes instead of half an
hour using the same environment

97%

Developer satisfaction

The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy

The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy
e Hierarchical jails can be leveraged similar ways as Docker-in-Docker

The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy

e Hierarchical jails can be leveraged similar ways as Docker-in-Docker

e By the way, OC| § FreeBSD

The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy

e Hierarchical jails can be leveraged similar ways as Docker-in-Docker

e By the way, OC| § FreeBSD

e The FreeBSD Test Suite is constantly growing and improving
o New features on the userland may help on the kernel side

The takeaways

e FreeBSD Jails can be thought of as similar to Linux Docker containers
— a good enough, though not perfect, analogy

e Hierarchical jails can be leveraged similar ways as Docker-in-Docker

e By the way, OCI § FreeBSD

e The FreeBSD Test Suite is constantly growing and improving
o New features on the userland may help on the kernel side

e Probably, FreeBSD PF has the best test coverage among open source
firewalls

Thank you

Ilgor Ostapenko X
*OpenFest 2024 igoro@FreeBSD.org

pM@igoro.pro

