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> whoami

● A software engineer since the 90’s
● Held various roles: Software Architect, Technology Advocate & Coach, 

DevOps, Tech Lead, Team Lead, Project Manager, CTO
● Worked with organizations of different sizes, from startups to international 

corporations like Nokia Networks
● At different levels, from assembly lang and reverse engineering up to 

consumer-facing stand-alone, mobile, and web apps

● This talk is about one of my FreeBSD contributions
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The FreeBSD Test Suite

● Unit test level
● Integration/system test level
● Organized with Kyua
● A Kyuafile lists the test programs
● > kyua test
● > kyua -v parallelism=8 test

syntax(2)
test_suite("FreeBSD")
test_program{name="arp", is_exclusive="true"}
atf_test_program{name="ptrace_test", timeout="15"}
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Virtual Machine as a metaphor
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The outcome

● Switching PF (Packet Filter) firewall tests to this feature was very easy:

-TEST_METADATA+= is_exclusive=true

+TEST_METADATA+= execenv="jail"

+TEST_METADATA+= execenv_jail_params="vnet allow.raw_sockets"

● It depends, but there are reports that it takes several minutes instead of half an 
hour using the same environment



97%
Developer satisfaction
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● FreeBSD Jails can be thought of as similar to Linux Docker containers           
– a good enough, though not perfect, analogy

● Hierarchical jails can be leveraged similar ways as Docker-in-Docker
● By the way, OCI 💜 FreeBSD
● The FreeBSD Test Suite is constantly growing and improving

○ New features on the userland may help on the kernel side
● Probably, FreeBSD PF has the best test coverage among open source 

firewalls
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