
Enhancing FreeBSD Test
Suite Parallelism

FreeBSD jail in jail after years of Linux docker in docker

Igor Ostapenko

igoro@FreeBSD.org
pm@igoro.pro

OpenFest 2024

> whoami

● A software engineer since the 90’s
● Held various roles: Software Architect, Technology Advocate & Coach,

DevOps, Tech Lead, Team Lead, Project Manager, CTO
● Worked with organizations of different sizes, from startups to international

corporations like Nokia Networks
● At different levels, from assembly lang and reverse engineering up to

consumer-facing stand-alone, mobile, and web apps

● This talk is about one of my FreeBSD contributions

Why do we test?

● Software development. Software development never changes.

Why do we test?

● Software development. Software development never changes.
● It’s still done by us, human beings. Defects are inevitable.

Why do we test?

● Software development. Software development never changes.
● It’s still done by us, human beings. Defects are inevitable.
● There are at least two options:

○ End users are going to face those defects
○ Or we hunt the bugs before releasing

Why do we test?

● Software development. Software development never changes.
● It’s still done by us, human beings. Defects are inevitable.
● There are at least two options:

○ End users are going to face those defects
○ Or we hunt the bugs before releasing

● $$$ usually is a decision maker

Why do we test?

● Software development. Software development never changes.
● It’s still done by us, human beings. Defects are inevitable.
● There are at least two options:

○ End users are going to face those defects
○ Or we hunt the bugs before releasing

● $$$ usually is a decision maker

The FreeBSD Test Suite

The FreeBSD Test Suite

● Unit test level

The FreeBSD Test Suite

● Unit test level
● Integration/system test level

The FreeBSD Test Suite

● Unit test level
● Integration/system test level
● Organized with Kyua

The FreeBSD Test Suite

● Unit test level
● Integration/system test level
● Organized with Kyua
● A Kyuafile lists the test programs

syntax(2)
test_suite("FreeBSD")
test_program{name="arp", is_exclusive="true"}
atf_test_program{name="ptrace_test", timeout="15"}

The FreeBSD Test Suite

● Unit test level
● Integration/system test level
● Organized with Kyua
● A Kyuafile lists the test programs
● > kyua test

syntax(2)
test_suite("FreeBSD")
test_program{name="arp", is_exclusive="true"}
atf_test_program{name="ptrace_test", timeout="15"}

The FreeBSD Test Suite

● Unit test level
● Integration/system test level
● Organized with Kyua
● A Kyuafile lists the test programs
● > kyua test
● > kyua -v parallelism=8 test

syntax(2)
test_suite("FreeBSD")
test_program{name="arp", is_exclusive="true"}
atf_test_program{name="ptrace_test", timeout="15"}

And there are FreeBSD Jails

Containerization

● There are many visions, but we just want to isolate the things

Containerization

● There are many visions, but we just want to isolate the things
● Initially, it was about security

Containerization

● There are many visions, but we just want to isolate the things
● Initially, it was about security
● Ended up as the new ways of development, delivery, and operations

Containerization

● There are many visions, but we just want to isolate the things
● Initially, it was about security
● Ended up as the new ways of development, delivery, and operations

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones
● 2007 – HP released Secure Resource Partitions for HP-UX, later renamed to

HP-UX Containers

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones
● 2007 – HP released Secure Resource Partitions for HP-UX, later renamed to

HP-UX Containers
● 2008 – Linux 2.6.24 introduced cgroups

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones
● 2007 – HP released Secure Resource Partitions for HP-UX, later renamed to

HP-UX Containers
● 2008 – Linux 2.6.24 introduced cgroups
● 2013 – Linux 3.8 introduced user namespaces

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones
● 2007 – HP released Secure Resource Partitions for HP-UX, later renamed to

HP-UX Containers
● 2008 – Linux 2.6.24 introduced cgroups
● 2013 – Linux 3.8 introduced user namespaces
● 2013, a month later – the release of Docker

Containerization renaissance

● 1979 – chroot was added to Unix Version 7 (considered as a real start point)
● 1980s and 1990s – mandatory access control, process domains
● 2000 – FreeBSD 4.0 introduced jails
● 2004 – Sun added Solaris Containers to Solaris 10, later evolved into Solaris

Zones
● 2007 – HP released Secure Resource Partitions for HP-UX, later renamed to

HP-UX Containers
● 2008 – Linux 2.6.24 introduced cgroups
● 2013 – Linux 3.8 introduced user namespaces
● 2013, a month later – the release of Docker

Virtual Machine as a metaphor

Testing of FreeBSD network modules

Such tests are mutually exclusive

Such tests are mutually exclusive

Docker in Docker (dind) – containerized CI workflows

Docker in Docker (dind) – containerized CI workflows

FreeBSD Jail in Jail

FreeBSD Jail in Jail

FreeBSD Jail in Jail

Kyua’s execution environment concept

● A test case may ask for a specific execenv

Kyua’s execution environment concept

● A test case may ask for a specific execenv
● The old way is named host

Kyua’s execution environment concept

● A test case may ask for a specific execenv
● The old way is named host
● The first extra execution environment is jail

syntax(2)
test_suite("FreeBSD")
atf_test_program{name="t1", timeout="15"}
atf_test_program{name="t2", execenv="jail"}
atf_test_program{name="t3", execenv="jail",
 execenv_jail_params="vnet allow.raw_sockets"}

Kyua’s execution environment concept

● A test case may ask for a specific execenv
● The old way is named host
● The first extra execution environment is jail
● > kyua -v parallelism=8 test

syntax(2)
test_suite("FreeBSD")
atf_test_program{name="t1", timeout="15"}
atf_test_program{name="t2", execenv="jail"}
atf_test_program{name="t3", execenv="jail",
 execenv_jail_params="vnet allow.raw_sockets"}

The outcome

● Switching PF (Packet Filter) firewall tests to this feature was very easy:

-TEST_METADATA+= is_exclusive=true

+TEST_METADATA+= execenv="jail"

+TEST_METADATA+= execenv_jail_params="vnet allow.raw_sockets"

● It depends, but there are reports that it takes several minutes instead of half an
hour using the same environment

97%
Developer satisfaction

The takeaways

● FreeBSD Jails can be thought of as similar to Linux Docker containers
– a good enough, though not perfect, analogy

The takeaways

● FreeBSD Jails can be thought of as similar to Linux Docker containers
– a good enough, though not perfect, analogy

● Hierarchical jails can be leveraged similar ways as Docker-in-Docker

The takeaways

● FreeBSD Jails can be thought of as similar to Linux Docker containers
– a good enough, though not perfect, analogy

● Hierarchical jails can be leveraged similar ways as Docker-in-Docker
● By the way, OCI 💜 FreeBSD

The takeaways

● FreeBSD Jails can be thought of as similar to Linux Docker containers
– a good enough, though not perfect, analogy

● Hierarchical jails can be leveraged similar ways as Docker-in-Docker
● By the way, OCI 💜 FreeBSD
● The FreeBSD Test Suite is constantly growing and improving

○ New features on the userland may help on the kernel side

The takeaways

● FreeBSD Jails can be thought of as similar to Linux Docker containers
– a good enough, though not perfect, analogy

● Hierarchical jails can be leveraged similar ways as Docker-in-Docker
● By the way, OCI 💜 FreeBSD
● The FreeBSD Test Suite is constantly growing and improving

○ New features on the userland may help on the kernel side
● Probably, FreeBSD PF has the best test coverage among open source

firewalls

Thank you

Igor Ostapenko

igoro@FreeBSD.org
pm@igoro.pro

OpenFest 2024

