
26FreeBSD Journal • September/October 2024

1 of 8

Testing is a rather broad concept today. Regardless of approaches, academic views, or
specific situations, it is difficult to resist the simple desire not to force the end user to
test on our behalf. Even a simple error can significantly harm the business in multiple

ways: reputation, time-to-market, conversion rate, expansion, etc. The industry has evolved
from relying on complex manual checks before release
to embracing automation whenever and wherever pos-
sible. Automated testing offers its benefits: shorter cy-
cles, more frequent feedback, additional confidence in
the result, less fear of changes, and so on. Even if auto-
mated testing is a significant part of the development
process, it is just one of many practices improving soft-
ware delivery.

Organizing Tests with Kyua
The FreeBSD Test Suite is typically located in

/usr/tests, with its infrastructure built on Kyua, a test-
ing framework created by Julio Merino. Kyua offers an
expressive test suite definition language, a safe runtime engine, and powerful report gen-
eration. Tests can be written using anything or without relying on a specific library. The unit
and integration tests found in the suite often utilize libraries like atf-c(3), atf-c++(3),
atf-sh(3), or pytest.

Kyua operates with the following hierarchy of key concepts: test suite > test program >
test case.

A test suite groups several binaries (test programs) into one set with a single name. A Lua
script is used to describe a test suite, which is typically saved in a special kyuafile(5). Let’s
consider the following existing file:

cat -n /usr/tests/sys/kern/Kyuafile
 1 -- Automatically generated by bsd.test.mk.
 2
 3 syntax(2)
 4
 5 test_suite(“FreeBSD”)
 6
 7 atf_test_program{name=”basic_signal”, }

BY IGOR OSTAPENKO

It is difficult to resist
the simple desire not to
force the end user to test
on our behalf.

Enhancing FreeBSD
Test Suite Parallelism
with Kyua’s Jail Feature

https://man.freebsd.org/cgi/man.cgi?query=atf-c&sektion=3
https://man.freebsd.org/cgi/man.cgi?query=atf-c%2B%2B&sektion=3
https://man.freebsd.org/cgi/man.cgi?query=atf-sh&sektion=3
https://www.freshports.org/devel/py-pytest/
https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5

27FreeBSD Journal • September/October 2024

[skipped]
 34 atf_test_program{name=”sonewconn_overflow”, required_programs=”python”,
required_user=”root”, is_exclusive=”true”}
 35 atf_test_program{name=”subr_physmem_test”, }
 36 plain_test_program{name=”subr_unit_test”, }
[skipped]
 45 atf_test_program{name=”unix_seqpacket_test”, timeout=”15”}
 46 atf_test_program{name=”unix_stream”, }
 47 atf_test_program{name=”waitpid_nohang”, }
 48 include(“acct/Kyuafile”)
 49 include(“execve/Kyuafile”)
 50 include(“pipe/Kyuafile”)

Line #3 specifies the required version of the syntax used. Line #5 sets the name for the
test suite. Usually, all /usr/tests/**/Kyuafile descriptions are collected into a single test
suite named FreeBSD. If a binary is based on ATF libraries, it’s registered using atf_test_
program, so Kyua can leverage ATF capabilities and specifics for such a test program. If it’s
not based on a library supported by Kyua and simply communicates results via exit code,
plain_test_program construct is used instead. There is also tap_test_program for test
programs that communicate results using the good old Test Anything Protocol.

Each Kyuafile describes test binaries only within its directory. However, /usr/tests are
structured the way that each test directory explicitly includes its subdirectories, as illustrated
in lines #48, #49, and #50. Consequently, running tests in this directory will execute all tests
from the sys/kern sub-tree, including those in sys/kern/acct, sys/kern/execve, and
sys/kern/pipe:

kyua test -k /usr/tests/sys/kern/Kyuafile

Line #1 indicates that Kyuafile is not created manually in the FreeBSD Test Suite. Instead,
as with most components of the FreeBSD build system, the process is handled through a
Makefile, which builds the test programs and generates the corresponding Kyuafile. To un-
derstand the process in detail, the generated /usr/tests/sys/kern/Kyuafile can be
compared with its source in /usr/src/tests/sys/kern/Makefile — it’s a straightforward
approach.

A test program that is not registered in the Kyuafile will not be recognized by Kyua and
therefore will not be executed.

There is no explicit mention of test cases in the Kyuafile because test cases are defined at
a lower level, within a test program, and it requires support from the library used. It’s often
more convenient to group several similar tests (i.e. test cases) within a single test program
binary rather than creating multiple separate test programs. Plain test programs are expect-
ed to provide only one test case, typically named “main” after the main() function. In con-
trast, tests based on ATF libraries can report multiple test cases. In Kyua, what we generally
call a test is referred to as a test case, which is treated as a unit of execution. Consequently,
a test suite described in a Kyuafile might seem to reference only a single test program, but
it could contain dozens or more test cases. The kyua list command lists test cases in the
format <test program>:<test case>, which can also be used with other commands, for
example, to run a specific test case individually:

2 of 8

https://en.wikipedia.org/wiki/Test_Anything_Protocol

28FreeBSD Journal • September/October 2024

cd /usr/tests/sys/kern
kyua test unix_dgram:basic

Each test case can have optional metadata properties in the form of key/value pairs,
which modify Kyua’s behavior for that specific test case. The Kyuafile example above shows
that the same metadata can be applied to all test cases within a test program. The illustrat-
ed properties are:

•	timeout allows changing the default value, which is 300 seconds.
•	If the binaries specified in required_programs are not found either by their full path or

within the PATH, the test case will be marked as skipped with the respective message.
•	required_user=”root” will skip the test if Kyua is not running with root privileges,

while required_user=”unprivileged” will ensure that the test is run without root ac-
cess rights.

•	is_exclusive=”true” specifies that the test cannot be run concurrently with other
tests.

Parallelism and Jails
Kyua can run test cases in parallel when configured to do so. By default, the parallelism

setting is set to 1, which means tests are run sequentially. This can be adjusted in kyua.conf(5)
or specified as an option:

kyua -v parallelism=8 test

Test cases that require exclusive access to a shared resource should be marked with
is_exclusive=”true” so Kyua knows not to run them in parallel with others. Kyua oper-
ates in two phases. First, it runs all non-exclusive test cases, which can be executed in paral-
lel if configured so. The second phase runs all exclusive test cases sequentially. To keep the
test suite efficient, it’s best to avoid adding new exclusive tests when possible and create
non-exclusive versions instead. Otherwise, the test suite may become too time-consuming
to execute.

However, some tests utilize the jail(8) feature to handle scenarios that are otherwise
difficult to reproduce. For example, network module testing often involves creating tempo-
rary jails to verify module behavior by poking it from
the host through epair(4). There are several reasons
why such tests must be marked as exclusive: they usu-
ally re-use the same jail naming for convenience (while
each jail in the system must have a unique name), the
same IP addresses officially allocated for demo pur-
poses are used to configure interfaces on the host
side leading to potential conflicts with a shared rout-
ing table, and other related issues. While these prob-
lems could be addressed by test cases themselves, do-
ing so would significantly increase the complexity for
test authors and maintainers, and some issues might
be impossible to resolve without external intervention. This is where the latest Kyua version
comes into play.

3 of 8

To keep the test suite
efficient, it’s best to avoid
adding new exclusive tests.

https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8
https://man.freebsd.org/cgi/man.cgi?query=epair&sektion=4

29FreeBSD Journal • September/October 2024

Execution Environment Concept
In 15-CURRENT Kyua provides a new concept called “execution environment”. It’s going

to be available from 14.2-RELEASE.
By default, tests continue to run as before by spawning child processes — this is referred

to as the host execution environment. A test case can opt-in to use a different execution
environment by specifying a new metadata property called execenv. The general sequence
of steps applied to each test case has been extended to include the following:

1. Execution environment initialization
2. Test execution
3. (optional) Test cleanup
4. Execution environment cleanup
Currently, Kyua supports only one additional execution environment — the jail environ-

ment. While it can be configured for individual test cases, the following example shows how
to apply the execenv metadata property to all test cases within a test program:

atf_test_program{name=”test_program”, execenv=”jail”}

This configuration causes Kyua to provide each test case in the test_program with its
own temporary jail in which to execute. If a test case declares a cleanup routine, it will be exe-
cuted within the same jail. Kyua uses jail(8) for creating these jails, and test cases can pass
additional parameters through a new metadata property called execenv_jail_params:

atf_test_program{name=”test_program”, execenv=”jail”, execenv_jail_params=”vnet allow.raw_
sockets”}

As long as the names of sub-jails do not conflict among different parent jails, and each jail
can have its own VNET stack, we can easily isolate tests — such as the network tests men-
tioned earlier — into separate jails and run them in parallel by removing the is_exclusive
flag. It depends on environment and configuration, but there are reports that netpfil/pf
test suite runs 4 or 5 times faster using the same environment — taking just a few minutes
instead of half an hour.

Implicit Parameters and Hierarchical Jails
Since a test case and its optional cleanup routine run in separate child processes, Kyua

implicitly appends the persist parameter to keep the temporary jail alive, allowing both
child processes to run within the same jail. Kyua ensures that the temporary jail is removed
during the “Execution environment cleanup” step.

Spawning jails by network tests is a common practice. This raises the question of whether
a test case, which is already running inside a jail, is permitted to create sub-jails. In principle,
this is allowed as long as system limits are not exceeded. Each jail has a limit on the number
of sub-jails that can be created. The following new read-only sysctl variables, introduced in
15-CURRENT, provide this information:

sysctl security.jail.children
security.jail.children.cur: 0
security.jail.children.max: 999999

Apparently, the above looks to be the highest jail in the hierarchy, so called prison0, and
almost a million of jails can be created according to the current and maximum values. When

4 of 8

https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8

30FreeBSD Journal • September/October 2024

jail(8) is used to create a new jail, it applies the following default configuration:

jail -c command=sysctl security.jail.children
security.jail.children.cur: 0
security.jail.children.max: 0

This indicates that no sub-jails are allowed. Obviously, test cases attempting to create new
jails would fail under these conditions. To address this, Kyua assists by adding another im-
plicit parameter that allows the maximum number of child jails, calculated as the parent jail’s
maximum limit minus one. Although it’s possible to configure this from the test case side
using the execenv_jail_params metadata property, it appears to be cumbersome and re-
petitive work.

The following formula clarifies how Kyua creates temporary jails and how this process can
be modified using metadata properties:

jail -qc name=<name> children.max=<parent_max-1> <test case defined params> persist

The name of a temporary jail is derived from the test program path and test case name.
For example, the test case /usr/tests/sys/kern/unix_dgram:basic will use a temporary
jail named kyua_usr_tests_sys_kern_unix_dgram_basic.

kldload concerns
Since all jails, except for prison0, lack the privilege to load kernel modules, this creates in-

conveniences if a test case relies on the jail execution environment.
Kyua’s original philosophy is to be usable by both developers and users. This means that

a system administrator should be able to run the test suite after OS upgrade to ensure ev-
erything is functioning as expected. Clearly, such a host is not a test lab where developers
can freely experiment, break things, or cause fire. Therefore, tests should be designed to
avoid disrupting the normal operation of the host unless explicitly instructed. That’s why
the FreeBSD Test Suite has configuration variables like allow_sysctl_side_effects to fol-
low this approach. Despite the fact that the suite is primarily treated as a developer tool, many
existing tests adhere to this principle by checking if a required module is loaded, rather than
loading it implicitly. A system administrator would not appreciate it if, for example, tests of a
firewall, which is not used by a host, inadvertently affect its traffic or even make it inaccessible.

Therefore, the recommended strategy is to use kldstat -q -m <module-name> within
the test case to check for the presence of required modules and skip the test if the module
is not found. The configuration of the FreeBSD CI ensures that all necessary modules are
loaded and required software packages are installed before running the test suite.

execenvs and WITHOUT_JAIL
A new engine configuration variable is provided — execenvs. By default, it is set to a list

of all supported execution environments:

kyua config
architecture = aarch64
execenvs = host jail
parallelism = 1
platform = arm64
unprivileged_user = tests

5 of 8

https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8

31FreeBSD Journal • September/October 2024

This variable can be manipulated through kyua.conf(5) or specified as an option for the
kyua(1) CLI. For instance, the following command will execute only host-based tests and
skip all others:

kyua -v execenvs=host test

If the system is built without jail support, only the default host execution environment
will be available. Consequently, any tests that require the jail execution environment will be
skipped.

Getting Started Examples
The following example, based on atf-sh(3), illustrates how to configure the jail environ-

ment at the test case level. It also reminds the importance of root user privileges.

cat /usr/src/tests/sys/kern/test_program.sh
atf_test_case “case1” “cleanup”
case1_head()
{
 atf_set descr 'Test that X does Y'
 atf_set require.user root
 atf_set execenv jail
 atf_set execenv.jail.params vnet allow.raw_sockets
}
case1_body()
{
 if ! kldstat -q -m tesseract; then
 atf_skip “This test requires tesseract”
 fi

 # test code...
}
case1_cleanup()
{
 # cleanup code...
}

atf_init_test_cases()
{
 atf_add_test_case “case1”
}

A single line addition to the Makefile is enough for this test program:

grep test_program /usr/src/tests/sys/kern/Makefile
ATF_TESTS_SH+= test_program

The build system will prepend the #!/usr/libexec/atf-sh shebang line, install the script
without the .sh extension at /usr/tests/sys/kern/test_program, and register it in the
Kyuafile accordingly:

6 of 8

https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=kyua&sektion=1
https://man.freebsd.org/cgi/man.cgi?query=atf-sh&sektion=3

32FreeBSD Journal • September/October 2024

grep test_program /usr/tests/sys/kern/Kyuafile
atf_test_program{name=”test_program”, }

Having multiple test cases within a single test program can lead to a Don’t Repeat Your-
self situation. To handle this, common metadata can be moved up to the test suite level in a
Kyuafile, allowing it to apply to the entire test program rather than repeating it for each test
case. However, individual test cases can still override these properties if necessary:

cat /usr/src/tests/sys/kern/test_program2.sh
atf_test_case “case2”
case2_head()
{
 atf_set descr 'Test that A does B'
}
case2_body()
{...}

atf_test_case “case3”
case3_head()
{
 atf_set descr 'Test that Foo does Bar'
 atf_set execenv.jail.params vnet allow.raw_sockets
}
case3_body()
{...}

atf_init_test_cases()
{
 atf_add_test_case “case2”
 atf_add_test_case “case3”
}

Now the main configuration is provided on the test program level:

grep test_program2 /usr/src/tests/sys/kern/Makefile
ATF_TESTS_SH+= test_program2
TEST_METADATA.test_program2+= execenv=”jail”,execenv_jail_params=”vnet”

As a result, Kyua consolidates metadata defined at different levels into the following:

kyua list -k /usr/tests/sys/kern/Kyuafile -v test_program2
test_program2:case2 (FreeBSD)
 description = Test that A does B
 execenv = jail
 execenv_jail_params = vnet
test_program2:case3 (FreeBSD)
 description = Test that Foo does Bar
 execenv = jail
 execenv_jail_params = vnet allow.raw_sockets

7 of 8

It’s important to note the key difference in metadata property naming conventions be-
tween ATF and Kyua — dots (execenv.jail.params) versus underscores (execenv_jail_
params). Additionally, names themselves may vary slightly, the kyuafile(5) and atf-test-
case(4) manual pages can be compared for that.

To switch an existing test to the jail execution environment, the is_exclusive=”true”
metadata property should be negated or removed. Otherwise, the test will not benefit from
parallel execution.

Further Reading
The entry point to the FreeBSD Test Suite is described in tests(7). For test authors, the

following wiki page is a valuable starting point: https://wiki.freebsd.org/TestSuite/Developer-
HowTo.

The official Kyua wiki is an excellent resource for historical aspects, design rationale, and
feature overviews. Detailed information on execution environments can be found in the
kyua.conf(5) and kyuafile(5) manual pages.

Also, reviewing how existing jail-based tests are written and organized is crucial to avoid
reinventing the wheel. The PF test suite located in /usr/src/tests/sys/netpfil/pf is a
great source for understanding of the established practices.

While retroactively adding tests to the existing code can be an enormous effort, incorpo-
rating tests that address bug fixes is a worthwhile opportunity to enhance the FreeBSD Test
Suite, and therefore the project as a whole.

IGOR OSTAPENKO is a FreeBSD contributor with a wide range of software development
experience in various areas, whether it’s systems for manipulating and testing navigation
devices, enterprise solutions for optimizing business processes, reverse-engineering, or B2B/
B2C startups.

33FreeBSD Journal • September/October 2024

8 of 8

https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=atf-test-case&sektion=4
https://man.freebsd.org/cgi/man.cgi?query=atf-test-case&sektion=4
https://man.freebsd.org/cgi/man.cgi?query=tests&sektion=7
https://wiki.freebsd.org/TestSuite/DeveloperHowTo
https://wiki.freebsd.org/TestSuite/DeveloperHowTo
https://github.com/freebsd/kyua/wiki
https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5

